Effect of the Structural Characteristics on Attachment-Detachment Mechanics of a Rigid-Flexible Coupling Adhesive Unit
Qijun Jiang, Liuwei Wang, Zhiyuan Weng, Zhouyi Wang, Zhendong Dai, Weidong Chen
Abstract: The terminal toes of adhesive animals are characterized by rigid-flexible coupling, and their structure-function relationship is an urgent problem to be solved in understanding bioinspired adhesive systems and the design of biomimetic adhesive units. In this paper, inspired by the rigid-flexible coupling adhesive system of the gecko toe, a rigid-flexible coupling adhesive unit was designed, the interface strength of the adhesives under different preloads was tested, and the model and analysis method of the compression and peeling process of the rigid-flexible coupling adhesive unit was established. Meanwhile, combined with the experimental test, the effect of the coupling mechanism of the rigid-flexible structure on the interfacial stress and the final peeling force during the compression and peeling process of the adhesive unit was studied. The research found that the length of the adhesive unit L has no apparent effect on the normal peel force of the system within a specific range, and the normal peeling force increases linearly with the increase in the compression force P; while the influence of the inclination angle theta(0) of the adhesive unit and the thickness of the rigid backing layer h(b) on the final normal peeling force of the system presents nonlinear characteristics, when the inclination angle theta(0) of the adhesive unit is 5 degrees, and the thickness of the rigid backing layer h(b) is 0.2 mm or 0.3 mm, the normal peel force and the ratio of adhesion force to preload the system reaches its maximum value. Compared with the flexible adhesive unit, the compressed zone formed by the rigid-flexible coupling adhesive unit during the same compression process increased by 6.7 times, while under the same peeling force, the peel zone increased by 8 times, and the maximum normal tensile stress at the peeling end decreased by 20 times. The rigid-flexible coupling mechanics improves the uniformity of the contact stress during the compression and peeling process. The research results provide guidelines for the design of the rigid-flexible coupling adhesive unit, further providing the end effector of the bionic wall-climbing robot with a rigid-flexible coupled bionic design.