[期刊论文] Dongchang Hou, Lifeng Wang , Yiqing Zhang, Effects of Van Der Waals Forces on the Vibration of Stacked Multilayered Graphene/Black Phosphorus Heterostructures, International Journal of Structural Stability and Dynamics, 2021

发布者:孙加亮发布时间:2022-04-28浏览次数:235

Effects of Van Der Waals Forces on the Vibration of Stacked Multilayered 

Graphene/Black Phosphorus Heterostructures


Dongchang HouLifeng Wang , Yiqing Zhang


Abstract: In this paper, the vibration of a stacked multilayered graphene/black phosphorus (G/BP) heterostructure is investigated via the mesh-free method. The shape function and its derivatives are addressed by the moving least squares (MLS) approach. Optimization of the sequential quadratic programming method is adopted to calculate the distance between the arbitrary layers. Therefore, coefficients of the van der Waals (vdW) interaction between arbitrary layers of heterostructures are obtained. Then the frequencies and mode shapes of the multilayered G/BP heterostructure, considering the vdW interaction between arbitrary layers, are compared with considering only the vdW interaction among adjacent layers. The effects of the number of layers and aspect ratio of the G/BP heterostructure on the frequencies are investigated. The results demonstrate that coefficients of the vdW interaction, considering the arbitrary layers, are larger than those considering only adjacent layers. The difference between natural frequencies considering arbitrary layers and those considering adjacent layers is not clear for the low-order cases. Alternatively, the difference between natural frequencies obtained considering arbitrary layers and those considering adjacent layers are obvious for high-order cases. This paper provides a useful method to optimize the vdW interaction between multilayered G/BP heterostructures and can adequately simulate their vibration behaviors.


原文链接:https://www.worldscientific.com/doi/abs/10.1142/S0219455421501157