Chaotic motion analysis of a rigid spacecraft dragging a satellite by elastic tether
Zhaojun Pang, Bensong Yu, Dongping Jin
Abstract: An analytic method studying the in-plane chaotic motion of an asymmetric rigid spacecraft with a tethered body is presented. Starting with the lumped masses modeling the viscoelastic tether, a numerical simulation of pitch motion of the tether is made. According to the configurations of the tether during the pitch motion, a simplified rod model is served as the ideal mechanics model for the tether. Near local equilibrium position, the equations of pitch motion of the system are uncoupled, so that their solutions can be expressed with elliptic functions. Furthermore, by using the Melnikov method, the threshold borders for the chaotic motion of the rigid spacecraft are obtained. The results show that the chaotic motion of a tethered rigid spacecraft would occur within threshold borders and can be suppressed by adding system damping.
原文链接: https://link.springer.com/article/10.1007/s00707-015-1333-3