Vibration of cantilevered double-walled carbon nanotubes predicted by Timoshenko beam model and molecular dynamics
Rumeng Liu, Lifeng Wang
Abstract: Vibration of double-walled carbon nanotubes (DWCNTs) with one end fixed and the other end free is studied by using different beam models of continuum mechanics and the molecular dynamics (MD) simulations. The models of the double-Euler beams (DEB) and the double-Timoshenko beams (DTB) of cantilevered case, with the van der Waals interaction between layers taken into consideration, are applied to predict the natural frequencies of DWCNTs. An analytical solution is first obtained for the DTB model with cantilevered boundary condition. The fundamental frequencies obtained by the DEB model and the DTB model are very close, for the relatively long DWCNTs. The MD simulations show that these two models can predict the natural frequencies well. However, the difference between the DEB model and the DTB model becomes obvious, for the vibration of the relatively short DWCNTs. The DTB model can offer a much better prediction than the DEB model when the DWCNT is very short especially for high-order frequencies.
原文链接: https://www.worldscientific.com/doi/abs/10.1142/S0219876215400174