[期刊论文] 张义青, 王立峰, 蒋经农, Thermal vibration of MoS2/Black phosphorus Bi-layered heterostructure, Physica E, 2019, 114:113597

发布者:孙加亮发布时间:2020-05-03浏览次数:581

Thermal vibration of MoS2/Black phosphorus Bi-layered heterostructure

Yiqing Zhang, Lifeng Wang and Jingnong Jiang


Abstract: Thermal vibration is extremely crucial to nanostructure-based nanoresonators. In this paper, a laminated plate model (LPM) with the van der Waals (vdW) interactions between MoS2 and black phosphorus (BP) taken into consideration is proposed to explore the thermally induced vibration of a MoS2/BP heterostructure. The vdW coefficient between single-layered MoS2 and single-layered BP is calculated. The natural frequencies and the root-mean-squared (RMS) amplitudes of the MoS2/BP heterostructure are obtained from molecular dynamics (MD) simulations and the LPM. The natural frequencies and the RMS amplitudes of the MoS2/BP heterostructure calculated by the LPM and those obtained from the MD simulations coincide well. The LPM has in-phase vibrational modes and anti-phase vibrational modes. The natural frequencies of the in-phase vibrational modes are much lower than the frequencies of the anti-phase vibrational modes of the same order. In the thermal vibration of the MoS2/BP heterostructure, the RMS amplitudes of MoS2 and BP are obviously different. Compared with the natural frequencies and RMS amplitudes of the MoS2/BP heterostructure obtained from the MD simulations, the LPM can provide an accurate prediction of the thermal vibration of the MoS2/BP heterostructure.


原文链接:https://www.sciencedirect.com/science/article/pii/S1386947719301729